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Rare events and breakdown of simple scaling in the Abelian sandpile model
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Due to intermittency and conservation, the Abelian sandpile in two dimensions obeys multifractal, rather
than finite size scaling. In the thermodynamic limit, a vanishingly small fraction of large avalanches dominates
the statistics and a constant gap scaling is recovered in higher moments of the toppling distribution. Thus, rare
events shape most of the scaling pattern and preserve a meaning for effective exponents, which can be
determined on the basis of numerical and exact redi8t§063-651X98)50209-7

PACS numbe(s): 64.60.Lx, 05.40+], 05.60+w, 46.10:+2

The sandpile model was introduced as a first example ofriticality which should be followed also for other models
self-organized criticalitf SOQ [1]. SOC can manifest itself and phenomena out of equilibrium.
in the stationary state of slowly driven, dissipative systems: Attempts to identify possible multiscaling features in ava-
intermittent activity bursts occur then over all allowed scales}anche distributions started soon after the introduction of
implying power law correlations in both space and time. SOC[11]. For 1D sandpiles evidence has been most often

The analytic tractability of the Abelian sandpii@SM)  definitely in favor of multiscaling[11-13. However, the
has allowed a number of exact results, especially in two diPhysical origin of such multiscaling was never fully eluci-
mensiong2—4]. This considerably enhanced the theoreticaldated. On the other hand, for systemsiin1 standard FSS
interest of this prototype model. On the other hand, in spitdas never been put into serious doubt, so far, and, with al-
of some remarkable advandes3,5,6, a satisfactory under- most no exception11], has always been assumed in both
standing of ASM scaling is still missing. Unlike many sta- numerical and theoretical work.
tionary state properties, the exponents describing avalanche We consider a square lattice box of sideAt each site
size distributions are not known exactly, yet, and remain &@n integer variablez;=1,2, ... represents the number of
major challenge in the whole field of nonequilibrium critical grains. Ifz;>z.=4 the site topples, i.ez;—z;—A;; , where
dynamics. A is the discrete Laplacian. Thus, when toppling, siteses

By analyzing the avalanches of a two-dimensio(2D)  four grains, giving one of them to each of its neighbors. At
sandpile in terms of wavd$], Priezzhewet al.[7] proposed the border, dissipative Dirichlet conditions are assumed, so
a scaling picture which led to conjecture all exponents, inthat one grain per toppling leaves the sandpile. Given a
cluding those describing the avalanche distributions in termstable configurationz <z:Vk), the dynamics starts by add-
of covered area and toppling number. Unfortunately, detering a grain at a randomly chosen sit€z,—z +1). If z
minations of such exponents are notoriously difficult and+ 1>z, the site topples, and, if the case, other sites topple,
there is no compelling numerical support of the conjectureas a consequence of this first instability, until a new stable
[8,9]. A more important objection came from an extensiveconfiguration is reached. The sequence of all such topplings
study[10], which showed the illegitimacy of a basic assump-constitutes an avalanche.
tion made in Ref[7], concerning the relative sizes and scal-  Grain addition is a slow driving mechanism compensated
ing of successive waves. by border dissipation, which allows one to reach the station-

In this Rapid Communication we reconsider scaling in theary SOC state after sufficiently many additions. If one con-
2D ASM. We show that intermittency and conservation leadsiders a large number of bursts at stationarity, on average,
to a breakdown of finite size scalii§S9 in the distribution ~one grain per event must be dissipated, because each ava-
of topplings. This distribution has manifest multiscaling lanche originates from addition of one grain. However, this
properties. However, due to a very peculiar role played by as still poor information on the dissipation mechanism. In-
class of rare, large avalanches, a standard FSS descriptideed, outflow of grains occurs intermittently, concentrating
can be effectively recovered, if one focuses on the highepn a small fraction of avalanches, which are separated by
moments of the distribution. Quite remarkably, within our random sequences of nondissipative bursts. This fraction ap-
picture the effective scaling exponents of the toppling num-roaches zero fot —o. Thus, dissipating avalanches in-
ber distribution are determined by an asymptotically vanish<rease indefinitely with. their outflow. This fact has crucial
ing fraction of all avalanches and take the same values corsonsequences on the role played by this subset of avalanches
jectured in Ref.[7]. Beyond these results, our analysis on the global statistics.
exemplifies a path towards the correct characterization of For the distributionP of the total number of topplings in

an avalanches, FSS would imply an asymptotic form
P(s,L)=s""p(s/LP), for s,L—x, whereD is a capacity

*Electronic address: demenech@pd.infn.it fractal dimension of the topplings. In order to better identify
"Electronic address: stella@pd.infn.it the role of rare, dissipating avalanches, we sampled only
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theL X L box. In this way avalanches which dissipate a num- N 0
ber of grainsn>0 at the borders are always necessarily R

large, since they span a distance of ortlerSuch central
seed setup is also most suitable for our study of correlation
functions. However, as discussed below, our results can be
obtained also with random additions over the whole box.
Between different central seed additions we decorrelated the
system with a sufficiently large number of arbitrary ava-
lanches.

We determined the outflow probability distribution
O(n,L) for L=32, 64, 128, 256, and its moments
2,0(n,L)n%=1/NZ;nf=(n%, , whereN is the number of
sampled avalanches<(10°) andn; is the outflow of theith
one. Also, the inverse first return frequency, i.e., the average
number of avalanche$ between two successive nonzero
outflows was determined. The intermittent character of the
stationary state is best revealed by the IB{i)«<L¢, which
is satisfied with{=0.50+0.01. Intermittency and stationar-
ity determine a peculiar scaling of the moments@f In-
deed, the fraction of avalanches with>0 is of orderL ~¢. FIG. 1. Plots ofo (solid line) and oy (dotted ling; the dashed
Thus, Iin}]w(nq),_ocL‘g. On the other hand, grain conser- line has slope-2.50+0.05 andy intercept{=0.50=0.01. Inset:
vation at stationarity also requirQs])L: 1=_9 (one grain  plot of f(«) vs a extrapolated from avalanche size distributions.
per avalanche addedThus, by defining in generaind),  Assumingf(a(«))=—1/2 we estimate(»)=—2.5+0.1.
xL~%(®  one expectso,>0 (0,<0) for 0<q<1 (q
>1). We verified numerically that the average outflow, r
stricted to avalanches with>0, (n)lellNlEni>oni (Nq is

the number of avalanches witi>0), grows asT, i.e.,«L¢.
These avalanches rarefy and grow in size lfer. The
most simple scaling to expect ign%), =L"4n9%),
4@~ for q>0. This implies a constant gap,(q)
—o,(q—1)=—¢ for g>1, i.e., a linear behavior for,
consistent with FSS. Such a simple picture is confirmed b
our numerical results. The behavior @f, is rather close to
linear for allg>0 with a gap=—1/2 ando,(0)=1/2. Some
previous determinations dfin the literature fully agree with
the present ongl1,14 and we conjecturé=1/2 exactly.

In order to elucidate the role of outflowing avalanches in
determining the distributiod® of the number of topplings,
we defineg;(r,L) as the number of topplings induced at site
r during theith avalanche. In view of the toppling rules, we
clearly have

0.2

f(a;
—0.4

NI IR N
—-25 -2 —-156 -1
[23

e.Servation [2]. Thus, while Eg.(2) suggestsos(q+1)
—o4(q)=—2.5 for allg>0, basic properties of the nonequi-
librium stationary state imposes(1)—o(0)=—2 exactly.

It remains to be decided whether a gaj2.5 still applies to
at least part of the moments Bf. Below we produce strong
evidence in support of such a conclusion.

Based onL=64, 128, 256, 512, we extrapolates] as
reported in Fig. 1. We find ligy,qo5(q) =0, and, within an

ccuracy of 103, o5 (1)=—2, as expected. Most remark-
ably, moments of orde>1 appear to conform very accu-
rately to the constant gap 2.5+ 0.1 expected on the basis of
Eqg. 2[e.g.,04(2)=4.5£0.05]. Moreover, for 8<q<1, oy
behaves nonlinearly, clearly confirming multiscaling for
Outflowing avalanches alone obey simple scaling to very
high accuracy. In Fig. 1 we report the moment exponent
o15(q) for the distributionP; of n>0 avalanches. Their
dominance in the cumulative statistics of all avalanches is
such that they impose their constant gag.5 as soon ag

>1.

An alternative way to discuss multiscaling is through the
spectrum of singularity strengthi «), i.e., the Legendre
transform ofog [15]: @a=dos/dq, f(a)=—0s+qa. a(q)
and f are defined with reference to a saddle pojist
=s*(q)] evaluation of(s9), in the L—o limit [s*(q)
=L"9 P(s*,L)=L* (@], The inset in Fig. 1 shows the
behavior off as derived by directly transforming olir=«

) extrapolated data foos. Alternatively one can extrapolate

ensemble evaluations éfand « at finite L. The discrepancy
i.e., o5(q)=—2q9+o0,(q). However, in spite of the strict of such different determinations allowed us to estimate their
linearity of o, assumed above, a constant gap behavior foaccuracy. The shape 6f«) is of course consistent with the
o, as suggested by E), is not acceptable. First of all, above results forog: in particular, the fact thaf(—5/2)

ni=2 Agi(r,L), 1)

where the Laplacian acts anand the sum extends to the
whole box. On the other hand,,g;(r,L)=s; is the number
of topplings in avalanche Thus, dimensional analysis alone
would suggest

(shHL®n),,

sinces>0 is not selective of outflowing avalanches, we can-

not have lim_o(s% *L~¢ Thus, o5(0%)#0,(07). In-
deed, we know that avalanches with 0 are a nonzero frac-
tion of the total sampled follL—oo [4]. This implies
limy .o 05(0)=0. In addition, (s), ==(g(r,L)) *L? has

=—1/2 is very well satisfied, agrees with the constant gap
—2.5 expected fowrg and with the fact that the linear con-
tinuation of the asymptotio¢ curve(dashed curve in Fig.)1
intercepts the vertical axis gt={=1/2.

We verified that the above properties®fand o5 remain

been rigorously shown on the basis of stationarity and consubstantially unaltered if sampled avalanches are created by
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{(g(r,L))1 =LY%g,(r/L), and the functiorg, is clearly not
logarithmic. The peculiar anomalous scaling dimension 1/2
appearing ing);, should be identified witlf. The collapses

in Fig. 2 show than>0 avalanches are indeed much richer
in topplings than the global average. The average number of
waves in each outflowing avalanche, coinciding with
(9(0,L))4, [3,6], is proportional td_*2. In fact, if referred to

all avalanches, such an average number grows only logarith-
mically with L [3], as we verified to high accuracy. Both
terms on the right-hand side of E(B) give a contribution
proportional toL? whenL — o, as expected for the left-hand
side.

The singularity strengtli( ) is also fully consistent with
the properties discussed abovid.—2.5)=—1/2 indicates
that outflowing avalanches, which are a fractlon*? of the
' total, have a fractal dimensioD =2.5. In fact, within the
% log,(r/L) -1 multiscaling framework one obtains a whole continuum of

Eio fractal dimensionsDq=[os(1)—os(q)]/[q—1] for ava-

FIG. 2. Collapse fit fo{g(r,L))1, . The inset reports a similar lanchesD, [15] ranges in the whole intervé®, 2.9, for 0
collapse for(g(r,L)), . Data refer to_ =64, 128, 256, 512. <gs1, withDy=2 andD,=2.5 (D4=D; for g>1).

Clearly, the very notion of standard scaling exponents can
random grain additions, occurring with uniform probability Not adapt toP, due to the multiscaling concentrated at low
on the whole box. In particulan>0 is still a condition able . However, in numerical workP is usually analyzed by
to collect the subset of large avalanches dominatinggfor assuming a FSS form, e.g., on the basis of collapse fits. Thus,
>1 in the L limit. Of course, in this case the subset it iS important to ask what should be the FSS form of distri-
includes also many bursts of activite.g., boundary ava- bution which most accurately reproduces the scaling of the
lanche$, whose importance becomes negligible in the thermoments ofP. The optimal job in this respect is done by a
modynamic limit. The central seed scheme offers the reldistribution of the FSS forms™"p(s/L), whoseqth mo-
evant advantage of more rapid convergence with comparab@ent exponent coincides withs(q) for g>1, and with the
sizes and statistics. function represented by the straight dashed line in Fig. 1 for

The constant gap foy>1 and the behavior of(«) can  d<1. Of course, we put the fractal dimension equalDo
be fully understood on the basis of the dominance of rare=D;=2.5inp, because its opposite has to coincide with the
outflowing avalanches. In our sampling, such avalanches a®symptotic slope ofrs. For such a scaling function one gets
also the largest, as far as distance spanned is concerned. Wes* ™ "p(s/LP)=LPZ~?. Thus, D(2—7)=2 leads tor
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can write =6/5. Some accurate numerical determinations based on
FSS[8] are very close to this, which remarkably coincides
q No q with that conjectured in Ref7]. The geometry of the vari-
<(E Q(V'L)) > :W<(E g(r,L)) > ous lines in Fig. 1 is very eloquent. In order to reduce the
' L ' oL multiscaling ofP to simple FSS, we have to shift $5=0 the

contribution ofn=0 avalanches in the histogram Bf This
> ., (3 amounts to bend the actua), curve in the interval0,1) into
in a straight segmenr(dashegl with intercept{ on the vertical
axis. Our results foD, and 7 give an indication of the prob-
whereN, is the number of not dissipating avalanches, andems arising when, e.g., one tries to enforce FSS collapses of
the subscripts of averages indicate restriction to the corredata for the simultaneous determinatiorDoaind 7. Privileg-
sponding sets. In Eq(3), of course,N;/N=L"¢, and 1 ing collapse in the region of low/LP produces a simulta-
—Ng/N=L"¢ neous lowering of botD and 7, like when searching a so-
Forq=1,{g(r,L)) and(g(r,L)),, in Eq.(3) satisfy very lution of Dy(2—7)=2 for low values ofgq. The extreme
well FSS, but in different forms. Our data fég(r,L)), are case isT=1 with D=Dy=2. Emphasizing collapse at high
consistent with a nearly logarithmic dependencertin (up ~ S/LP produces higher determinations of b@hand . In this
to effects due to the upper and lower cutdff§his is illus-  case a relatively poor sampling can lead to an overestimation
trated by the collapse plot in the inset of Fig. 2. Such loga-of both exponents with respect to the above effective values.
rithmic behavior of(g), agrees with the fact that this func- Indeed, we verified thats and thusD tend to be overesti-
tion has to coincide with the inverse Laplacian on the boxmated systematically at largg
Indeed, due to the local conservation of grains, which holds The standard exponents af>0 avalanches alonéen-
on average for the whole sample of avalancfigs (g),  semble ] are r; and D such that we can puP,(s,L)
must satisfy a Poisson equation with a unit source in the=s™p,(s/LP). From our results and from the constant gap
origin r=0. On the other hand, fofg(r,L));, one cannot —2.5 foro,g, it follows immediatelyD =2.5 and7;=1.
invoke local conservation. In fact, as shown by the collapse Summarizing, we showed that standard FSS does not hold
plot in Fig. 2, our data are very well consistent with a form for the ASM in 2D. Conservation of grains is guaranteed by
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an intermittent mechanism, with rare, large avalanches prathe conjecturedandD in the present framework. The criti-
ducing the outflowing current. These avalanches are such teal state of the ASM in P is expected to correspond to that
fully determine the moments d® from the first one up- of a non-unitary conformal field theory with central charge
wards. The multiscaling spectrum of singularity strengths forc=—2 [3]. The compatibility of multiscaling with other

P has peculiar features associated with the dominance of raiton-unitary conformal field theories has been pointed out
events. In particulaf (—5/2)=—1/2 shows that rare ava- recently[18]. It is also known[19] that in a theory withc
lanches have a fractal dimension equal to 5/2 and occur witk= — 2 a correlator of disorder operators possesses exactly the
frequency=L Y2 These features are such to give6/5  scaling dimension 1/2.

and D=2.5 as effective exponents representing the multi- We expect intermittency and dominance of rare, large
scaling within an imposed simple FSS framework. Not sur-events to play a key role also in the physics of other SOC
prisingly, FSS based numerical determinationsraind D models. Indeed, @D sandpiles most often display pronounced
are often quite close to the values mentioned alj@je multiscaling features and intermittenf¥1—-13. Of course,

In spite of the fact that the approach of REf] does not  the Abelian symmetry and the Laplacian characterization of
take into account multiscaling features, the valuesafdD  the toppling dynamics made the analysis of these features
we propose coincide with those conjectured there. Not surrelatively easy here, to the extent that exact properties of the
prisingly, in view of our results, that conjecture has metmodel could be inferred. The case of ASM in higher dimen-
problems of numerical verificatiofl0]. A revisitation of  sions, for whichs,(g(r,L)), *L? seems to hold irrespective
wave, or, rather, clusterl6] properties in the light of the of d [2,20], is also quite intriguing.
dominance of large avalanches and multiscaling can clarify
the situation[17].

Crucial to the identification of our effective exponents are  Partial support from the European Network Contract No.
the constant gap-(2+¢) for g>1 and the exact result ERBFMRXCT980183 is acknowledged. C.T. wishes to
o4(1)=—2[2]. Thus, it is precisely=1/2 that determines thank ISAS, Trieste, where part of this work was done.
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