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Rare events and breakdown of simple scaling in the Abelian sandpile model
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Due to intermittency and conservation, the Abelian sandpile in two dimensions obeys multifractal, rather
than finite size scaling. In the thermodynamic limit, a vanishingly small fraction of large avalanches dominates
the statistics and a constant gap scaling is recovered in higher moments of the toppling distribution. Thus, rare
events shape most of the scaling pattern and preserve a meaning for effective exponents, which can be
determined on the basis of numerical and exact results.@S1063-651X~98!50209-7#

PACS number~s!: 64.60.Lx, 05.40.1j, 05.60.1w, 46.10.1z
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The sandpile model was introduced as a first example
self-organized criticality~SOC! @1#. SOC can manifest itsel
in the stationary state of slowly driven, dissipative system
intermittent activity bursts occur then over all allowed scal
implying power law correlations in both space and time.

The analytic tractability of the Abelian sandpile~ASM!
has allowed a number of exact results, especially in two
mensions@2–4#. This considerably enhanced the theoreti
interest of this prototype model. On the other hand, in sp
of some remarkable advances@2,3,5,6#, a satisfactory under
standing of ASM scaling is still missing. Unlike many st
tionary state properties, the exponents describing avalan
size distributions are not known exactly, yet, and remai
major challenge in the whole field of nonequilibrium critic
dynamics.

By analyzing the avalanches of a two-dimensional~2D!
sandpile in terms of waves@6#, Priezzhevet al. @7# proposed
a scaling picture which led to conjecture all exponents,
cluding those describing the avalanche distributions in te
of covered area and toppling number. Unfortunately, de
minations of such exponents are notoriously difficult a
there is no compelling numerical support of the conject
@8,9#. A more important objection came from an extensi
study@10#, which showed the illegitimacy of a basic assum
tion made in Ref.@7#, concerning the relative sizes and sc
ing of successive waves.

In this Rapid Communication we reconsider scaling in
2D ASM. We show that intermittency and conservation le
to a breakdown of finite size scaling~FSS! in the distribution
of topplings. This distribution has manifest multiscalin
properties. However, due to a very peculiar role played b
class of rare, large avalanches, a standard FSS descri
can be effectively recovered, if one focuses on the hig
moments of the distribution. Quite remarkably, within o
picture the effective scaling exponents of the toppling nu
ber distribution are determined by an asymptotically vani
ing fraction of all avalanches and take the same values c
jectured in Ref. @7#. Beyond these results, our analys
exemplifies a path towards the correct characterization
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criticality which should be followed also for other mode
and phenomena out of equilibrium.

Attempts to identify possible multiscaling features in av
lanche distributions started soon after the introduction
SOC @11#. For 1D sandpiles evidence has been most of
definitely in favor of multiscaling@11–13#. However, the
physical origin of such multiscaling was never fully eluc
dated. On the other hand, for systems ind.1 standard FSS
has never been put into serious doubt, so far, and, with
most no exception@11#, has always been assumed in bo
numerical and theoretical work.

We consider a square lattice box of sideL. At each sitei
an integer variablezi51,2, . . . represents the number o
grains. Ifzi.zc54 the site topples, i.e.,zj→zj2D j i , where
D is the discrete Laplacian. Thus, when toppling, sitei loses
four grains, giving one of them to each of its neighbors.
the border, dissipative Dirichlet conditions are assumed
that one grain per toppling leaves the sandpile. Given
stable configuration (zk<zc;k), the dynamics starts by add
ing a grain at a randomly chosen sitel (zl→zl11). If zl
11.zc the site topples, and, if the case, other sites top
as a consequence of this first instability, until a new sta
configuration is reached. The sequence of all such toppli
constitutes an avalanche.

Grain addition is a slow driving mechanism compensa
by border dissipation, which allows one to reach the stati
ary SOC state after sufficiently many additions. If one co
siders a large number of bursts at stationarity, on avera
one grain per event must be dissipated, because each
lanche originates from addition of one grain. However, t
is still poor information on the dissipation mechanism. I
deed, outflow of grains occurs intermittently, concentrat
on a small fraction of avalanches, which are separated
random sequences of nondissipative bursts. This fraction
proaches zero forL→`. Thus, dissipating avalanches in
crease indefinitely withL their outflow. This fact has crucia
consequences on the role played by this subset of avalan
on the global statistics.

For the distributionP of the total number of topplings in
an avalanche,s, FSS would imply an asymptotic form
P(s,L).s2tp(s/LD), for s,L→`, whereD is a capacity
fractal dimension of the topplings. In order to better ident
the role of rare, dissipating avalanches, we sampled o
avalanches generated by grains added right at the cent
R2677 © 1998 The American Physical Society
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theL3L box. In this way avalanches which dissipate a nu
ber of grainsn.0 at the borders are always necessa
large, since they span a distance of orderL. Such central
seed setup is also most suitable for our study of correla
functions. However, as discussed below, our results can
obtained also with random additions over the whole b
Between different central seed additions we decorrelated
system with a sufficiently large number of arbitrary av
lanches.

We determined the outflow probability distributio
O(n,L) for L532, 64, 128, 256, and its momen
(nO(n,L)nq51/N( ini

q5^nq&L , whereN is the number of
sampled avalanches (<108) andni is the outflow of thei th
one. Also, the inverse first return frequency, i.e., the aver
number of avalanchesT between two successive nonze
outflows was determined. The intermittent character of
stationary state is best revealed by the lawT(L)}Lz, which
is satisfied withz50.5060.01. Intermittency and stationa
ity determine a peculiar scaling of the moments ofO. In-
deed, the fraction of avalanches withn.0 is of orderL2z.
Thus, limq→0^n

q&L}L2z. On the other hand, grain conse
vation at stationarity also requires^n&L515L0 ~one grain
per avalanche added!. Thus, by defining in general̂nq&L

}L2sn(q), one expectssn.0 (sn,0) for 0,q,1 (q
.1). We verified numerically that the average outflow,
stricted to avalanches withn.0, ^n&1L51/N1(ni.0ni (N1 is

the number of avalanches withn.0), grows asT, i.e.,}Lz.
These avalanches rarefy and grow in size forL→`. The
most simple scaling to expect iŝ nq&L.L2z^nq&1L

}Lz(q21) for q.0. This implies a constant gapsn(q)
2sn(q21)52z for q.1, i.e., a linear behavior forsn ,
consistent with FSS. Such a simple picture is confirmed
our numerical results. The behavior ofsn is rather close to
linear for allq.0 with a gap.21/2 andsn(0).1/2. Some
previous determinations ofz in the literature fully agree with
the present one@11,14# and we conjecturez51/2 exactly.

In order to elucidate the role of outflowing avalanches
determining the distributionP of the number of topplings
we definegi(r ,L) as the number of topplings induced at s
r during thei th avalanche. In view of the toppling rules, w
clearly have

ni5(
r

Dgi~r ,L !, ~1!

where the Laplacian acts onr and the sum extends to th
whole box. On the other hand,( rgi(r ,L)5si is the number
of topplings in avalanchei . Thus, dimensional analysis alon
would suggest

^sq&L}L2q^nq&L , ~2!

i.e., ss(q)522q1sn(q). However, in spite of the stric
linearity of sn assumed above, a constant gap behavior
ss , as suggested by Eq.~2!, is not acceptable. First of all
sinces.0 is not selective of outflowing avalanches, we ca
not have limq→0^s

q&L}L2z. Thus, ss(0
1)Þsn(01). In-

deed, we know that avalanches withs.0 are a nonzero frac
tion of the total sampled forL→` @4#. This implies
limq→0 ss(q)50. In addition, ^s&L5( r^g(r ,L)&L}L2 has
been rigorously shown on the basis of stationarity and c
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servation @2#. Thus, while Eq. ~2! suggestsss(q11)
2ss(q)522.5 for allq.0, basic properties of the nonequ
librium stationary state imposess(1)2ss(0)522 exactly.
It remains to be decided whether a gap22.5 still applies to
at least part of the moments ofP. Below we produce strong
evidence in support of such a conclusion.

Based onL564, 128, 256, 512, we extrapolatedss as
reported in Fig. 1. We find limq→0ss(q)50, and, within an
accuracy of 1023, ss (1)522, as expected. Most remark
ably, moments of orderq.1 appear to conform very accu
rately to the constant gap22.560.1 expected on the basis o
Eq. 2 @e.g.,ss(2)54.560.05]. Moreover, for 0,q,1, ss
behaves nonlinearly, clearly confirming multiscaling forP.
Outflowing avalanches alone obey simple scaling to v
high accuracy. In Fig. 1 we report the moment expon
s1s(q) for the distributionP1 of n.0 avalanches. Their
dominance in the cumulative statistics of all avalanches
such that they impose their constant gap22.5 as soon asq
.1.

An alternative way to discuss multiscaling is through t
spectrum of singularity strengthsf (a), i.e., the Legendre
transform ofss @15#: a5dss /dq, f (a)52ss1qa. a(q)
and f are defined with reference to a saddle point@s
5s* (q)# evaluation of ^sq&L in the L→` limit @s* (q)
.L2a, P(s* ,L).La1 f (a)] . The inset in Fig. 1 shows the
behavior off as derived by directly transforming ourL5`
extrapolated data forss . Alternatively one can extrapolat
ensemble evaluations off anda at finiteL. The discrepancy
of such different determinations allowed us to estimate th
accuracy. The shape off (a) is of course consistent with th
above results forss : in particular, the fact thatf (25/2)
521/2 is very well satisfied, agrees with the constant g
22.5 expected forss and with the fact that the linear con
tinuation of the asymptoticss curve~dashed curve in Fig. 1!
intercepts the vertical axis aty5z51/2.

We verified that the above properties ofP andss remain
substantially unaltered if sampled avalanches are create

FIG. 1. Plots ofss ~solid line! ands1s ~dotted line!; the dashed
line has slope22.5060.05 andy interceptz50.5060.01. Inset:
plot of f (a) vs a extrapolated from avalanche size distribution
Assumingf „a(`)…521/2 we estimatea(`)522.560.1.
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random grain additions, occurring with uniform probabili
on the whole box. In particular,n.0 is still a condition able
to collect the subset of large avalanches dominating foq
.1 in the L→` limit. Of course, in this case the subs
includes also many bursts of activity~e.g., boundary ava
lanches!, whose importance becomes negligible in the th
modynamic limit. The central seed scheme offers the
evant advantage of more rapid convergence with compar
sizes and statistics.

The constant gap forq.1 and the behavior off (a) can
be fully understood on the basis of the dominance of r
outflowing avalanches. In our sampling, such avalanches
also the largest, as far as distance spanned is concerned
can write

K S (
r

g~r ,L ! D qL
L

5
N0

N K S (
r

g~r ,L ! D qL
0L

1
N1

N K S (
r

g~r ,L ! D qL
1L

, ~3!

whereN0 is the number of not dissipating avalanches, a
the subscripts of averages indicate restriction to the co
sponding sets. In Eq.~3!, of course,N1 /N.L2z, and 1
2N0 /N.L2z.

For q51, ^g(r ,L)&L and^g(r ,L)&1L in Eq. ~3! satisfy very
well FSS, but in different forms. Our data for^g(r ,L)&L are
consistent with a nearly logarithmic dependence onr /L ~up
to effects due to the upper and lower cutoffs!. This is illus-
trated by the collapse plot in the inset of Fig. 2. Such lo
rithmic behavior of̂ g&L agrees with the fact that this func
tion has to coincide with the inverse Laplacian on the b
Indeed, due to the local conservation of grains, which ho
on average for the whole sample of avalanches@2#, ^g&L
must satisfy a Poisson equation with a unit source in
origin r50. On the other hand, for̂g(r ,L)&1L one cannot
invoke local conservation. In fact, as shown by the colla
plot in Fig. 2, our data are very well consistent with a for

FIG. 2. Collapse fit for̂ g(r ,L)&1L . The inset reports a simila
collapse for̂ g(r ,L)&L . Data refer toL564, 128, 256, 512.
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^g(r ,L)&1L.L1/2g1(r /L), and the functiong1 is clearly not
logarithmic. The peculiar anomalous scaling dimension
appearing in̂ g&1L should be identified withz. The collapses
in Fig. 2 show thatn.0 avalanches are indeed much rich
in topplings than the global average. The average numbe
waves in each outflowing avalanche, coinciding w
^g(0,L)&1L @3,6#, is proportional toL1/2. In fact, if referred to
all avalanches, such an average number grows only loga
mically with L @3#, as we verified to high accuracy. Bot
terms on the right-hand side of Eq.~3! give a contribution
proportional toL2 whenL→`, as expected for the left-han
side.

The singularity strengthf (a) is also fully consistent with
the properties discussed above.f (22.5)521/2 indicates
that outflowing avalanches, which are a fractionL21/2 of the
total, have a fractal dimensionD52.5. In fact, within the
multiscaling framework one obtains a whole continuum
fractal dimensionsDq5@ss(1)2ss(q)#/@q21# for ava-
lanches.Dq @15# ranges in the whole interval~2, 2.5!, for 0
<q<1, with D052 andD152.5 (Dq5D1 for q.1).

Clearly, the very notion of standard scaling exponents
not adapt toP, due to the multiscaling concentrated at lo
q. However, in numerical work,P is usually analyzed by
assuming a FSS form, e.g., on the basis of collapse fits. T
it is important to ask what should be the FSS form of dis
bution which most accurately reproduces the scaling of
moments ofP. The optimal job in this respect is done by
distribution of the FSS forms2tp(s/LD), whoseqth mo-
ment exponent coincides withss(q) for q.1, and with the
function represented by the straight dashed line in Fig. 1
q,1. Of course, we put the fractal dimension equal toD
5D152.5 in p, because its opposite has to coincide with t
asymptotic slope ofss . For such a scaling function one ge
(ss

12tp(s/LD).LD(22t). Thus, D(22t)52 leads to t
56/5. Some accurate numerical determinations based
FSS@8# are very close to thist, which remarkably coincides
with that conjectured in Ref.@7#. The geometry of the vari-
ous lines in Fig. 1 is very eloquent. In order to reduce
multiscaling ofP to simple FSS, we have to shift tos50 the
contribution ofn50 avalanches in the histogram ofP. This
amounts to bend the actualss curve in the interval~0,1! into
a straight segment~dashed!, with interceptz on the vertical
axis. Our results forDq andt give an indication of the prob-
lems arising when, e.g., one tries to enforce FSS collapse
data for the simultaneous determination ofD andt. Privileg-
ing collapse in the region of lows/LD produces a simulta-
neous lowering of bothD and t, like when searching a so
lution of Dq(22t)52 for low values ofq. The extreme
case ist51 with D5D052. Emphasizing collapse at hig
s/LD produces higher determinations of bothD andt. In this
case a relatively poor sampling can lead to an overestima
of both exponents with respect to the above effective valu
Indeed, we verified thatss and thusDq tend to be overesti-
mated systematically at largeq.

The standard exponents ofn.0 avalanches alone~en-
semble 1! are t1 and D such that we can putP1(s,L)
5s2t1p1(s/LD). From our results and from the constant g
22.5 for s1s , it follows immediatelyD52.5 andt151.

Summarizing, we showed that standard FSS does not
for the ASM in 2D. Conservation of grains is guaranteed
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an intermittent mechanism, with rare, large avalanches
ducing the outflowing current. These avalanches are suc
fully determine the moments ofP from the first one up-
wards. The multiscaling spectrum of singularity strengths
P has peculiar features associated with the dominance of
events. In particularf (25/2)521/2 shows that rare ava
lanches have a fractal dimension equal to 5/2 and occur
frequency}L21/2. These features are such to givet56/5
and D52.5 as effective exponents representing the mu
scaling within an imposed simple FSS framework. Not s
prisingly, FSS based numerical determinations oft and D
are often quite close to the values mentioned above@8#.

In spite of the fact that the approach of Ref.@7# does not
take into account multiscaling features, the values oft andD
we propose coincide with those conjectured there. Not s
prisingly, in view of our results, that conjecture has m
problems of numerical verification@10#. A revisitation of
wave, or, rather, cluster@16# properties in the light of the
dominance of large avalanches and multiscaling can cla
the situation@17#.

Crucial to the identification of our effective exponents a
the constant gap2(21z) for q.1 and the exact resul
ss(1)522 @2#. Thus, it is preciselyz51/2 that determines
et
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the conjecturedt andD in the present framework. The criti
cal state of the ASM in 2D is expected to correspond to th
of a non-unitary conformal field theory with central char
c522 @3#. The compatibility of multiscaling with other
non-unitary conformal field theories has been pointed
recently @18#. It is also known@19# that in a theory withc
522 a correlator of disorder operators possesses exactly
scaling dimension 1/2.

We expect intermittency and dominance of rare, lar
events to play a key role also in the physics of other S
models. Indeed, 1D sandpiles most often display pronounc
multiscaling features and intermittency@11–13#. Of course,
the Abelian symmetry and the Laplacian characterization
the toppling dynamics made the analysis of these featu
relatively easy here, to the extent that exact properties of
model could be inferred. The case of ASM in higher dime
sions, for which( r^g(r ,L)&L}L2 seems to hold irrespectiv
of d @2,20#, is also quite intriguing.
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